Search results

Search for "lithium cobalt oxide" in Full Text gives 1 result(s) in Beilstein Journal of Nanotechnology.

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • the annealing temperature causes a steady decrease in the DC conductivity. Keywords: lithium cobalt oxide; lithium-ion battery; nanocrystalline powder; solution combustion synthesis; Introduction Lithium cobalt oxide (LiCoO2, LCO) of hexagonal structure () was first used as cathode material in
  • capable of reversibly intercalating lithium ions [2]. The commercialization of lithium-ion cells was achieved in the early 1990s by Sony Corporation and in 1992 by a joint venture company (Asahi Kasai and Toshiba) [2][3][4]. Almost 90% of commercial Li-ion batteries consist of a lithium cobalt oxide
  • is a widely used method for the creation of nanomaterials [48][49][50][51][52][53][54][55][56][57]. Acetates, carbonates, and nitrate salts of lithium and cobalt are often utilized as starting materials and oxidizers in the combustion synthesis of lithium cobalt oxide [50][58][59]. Different ammonium
PDF
Album
Full Research Paper
Published 07 Dec 2022
Other Beilstein-Institut Open Science Activities